Parameter estimation for a discrete–response model with double rules of sample selection: A Bayesian approach
نویسندگان
چکیده
We present a Bayesian sampling approach to parameter estimation in a discrete– response model with double rules of selectivity, where the dependent variables contain two layers of binary choices and one ordered response. Our investigation is motivated by an empirical study using such a double–selection rule for three labor–market outcomes, namely labor force participation, employment and occupational skill level. Full information maximum likelihood (FIML) estimation often encounters convergence problems in numerical optimization. The contribution of our investigation is to present a sampling algorithm through a new reparameterization strategy. We conduct Monte Carlo simulation studies and find that the numerical optimization of FIML fails for more than half of the simulated samples. Our Bayesian method performs as well as FIML for the simulated samples where FIML works. Moreover, for the simulated samples where FIML fails, Bayesian works as well as it does for the simulated samples where FIML works. We apply the proposed sampling algorithm to the double–selection model of labor–force participation, employment and occupational skill level. We derive the 95% Bayesian credible intervals for marginal effects of the explanatory variables on the three labor–force outcomes. In particular, the marginal effects of mental health factors on these three outcomes are discussed.
منابع مشابه
Bayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملBayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
متن کاملA Bayesian Sampling Algorithm for a Discrete-Response Model With Double Rules of Sample Selection
We present a Bayesian sampling algorithm for parameter estimation in a discrete-response model, where the dependent variables contain two layers of binary choices and one ordered response. Our investigation is motivated by an empirical study using such a double-selection rule for three labour-market outcomes, namely labour-force participation, employment and occupational skill level. It is of p...
متن کاملA Bayesian Nominal Regression Model with Random Effects for Analysing Tehran Labor Force Survey Data
Large survey data are often accompanied by sampling weights that reflect the inequality probabilities for selecting samples in complex sampling. Sampling weights act as an expansion factor that, by scaling the subjects, turns the sample into a representative of the community. The quasi-maximum likelihood method is one of the approaches for considering sampling weights in the frequentist framewo...
متن کاملBayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions
In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...
متن کامل